Examination of Capacities of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ Nanocages as High Efficiency Catalysts for Oxygen Reduction Reaction (ORR) in Fuel Cell

¹Ziyan Cheng, ¹Liyan You*, ¹Chaohong Ma and ²Tiang Hengo ¹School of Biological and Pharmaceutical Engineering, JiLin Agricultural Science and Technology College, Jilin, Jilin 132101, China.

²Shaoxing Hanli Industrial Automation, Shaoxing, Zhejiang, China. youliyan@jlnku.edu.cn*

(Received on 30th May 2025, accepted in revised form 20th October 2025)

Summary: Here, the capacities of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages of ORR are examined. The mechanisms of ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages as catalysts are investigated. Results indicated that Cr have favorable bonds with Si, C and Ge of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages. The OOH adsorption on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages is more favorite process than O₂ dissociation from thermodynamic view point. The *OH formation is rate-determining for ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages. The Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ have higher catalytic activity for ORR processes than metal-based catalysts and AlN, C, BN, AlP and BP nanocages and AlN, C, BN, Si, Ge, AIP and BP nanotubes. The over-potential of ORR on surfaces of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge60 are lower than metal based catalysts. The Cr-Si60 and Cr-Ge60 nanocages have lower overpotential for ORR than Cr-C₆₀ nanocage. The Cr-Si₆₀ and Cr-Ge₆₀ are proposed as new catalysts for reaction steps of ORR by acceptable performance.

Keyword: Oxygen-RR, Si₆₀, Nano-catalyst, Reduction mechanism, Acid environment, Over-potential.

Introduction

The oxygen reduction reaction (ORR) can be reduced the efficiency and performance of fuel cells [1]. The one way to increase the efficiency of fuel cells is to reduce the oxygen reduction reaction (ORR). Researchers have made great efforts to find suitable catalysts for the oxygen ORR. The metal-based catalysts have moderate efficiency for the ORR [2]. The metalbased catalysts have low stability and high cost, as well as environmental problems for the ORR [3].

The carbon nanoparticle-based catalysts for the ORR have high stability, low cost, and large surface area [4]. The carbon nanoparticle-based catalysts can improve the efficiency of fuel cells by catalyzing the ORR [5]. The adsorption of metals on the surface of carbon-based catalysts can significantly increase the efficiency of carbon nanoparticle-based catalysts. The metals adsorbed on carbon nanoparticle-based catalysts have the ability to adsorb species related to ORR [6].

In previous works, the capacities of various metal-based catalysts [7] and Metals (Fe, Co, Ni and Cu) doped AlN, C, BN, AlP and BP nanocages and Metals (Fe, Co, Ni and Cu) doped AlN, C, BN, Si, Ge, AlP and BP nanotubes [8] for ORR processes have been examined. The mechanisms for ORR processes on surfaces of various metal-based catalysts [9] and Metal doped nanostructures have been investigated [10]. Results have shown than the Metal doped nanostructures [11] have higher catalytic activity for ORR processes than various metal-based catalysts [12]. Results have indicated that the pathways and their steps of ORR on various metal-based catalysts [13] and Metal doped nanostructures have been investigated [14] are same.

Researcher have demonstrated that the C₆₀ structure is one of the most stable nanocages that has high surface area, thermodynamic stability and high catalytic activity for inorganic reactions [15]. The other derivatives of C₆₀ structure such as Si₆₀ and Ge₆₀ structures similar to C₆₀ structure have high thermodynamic stability and formation energy and their surfaces area have higher than C_{60} structure. The metal adoption on surfaces of C₆₀, Si₆₀ and Ge₆₀ structures can improve their catalytic capacities to adsorb the intermediates of important organic reactions [16].

In this study, the potential of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages of ORR are investigated. The effects of adsorption of Cr on Si_{60} , C_{60} and Ge_{60} on capacities for ORR are examined. The acceptable pathways of ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ are examined. The goals of this work are: to suggest the catalysts (Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀) for ORR with acceptable performances; to compare the performances of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ for ORR; to propose available pathways of ORR on Cr-

^{*}To whom all correspondence should be addressed.

Si₆₀, Cr-C₆₀ and Cr-Ge₆₀; to find the Cr adsorption effects on capacities of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ for ORR; to compare the efficiency of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ for ORR with metal based catalysts.

Computational details

The geometries of Si₆₀, C₆₀, Ge₆₀, Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ and complexes with ORR derivatives have been optimized by M06-2X/6-311+G (2d, 2p) model in GAMESS software [16, 17]. The frequencies of Si₆₀, C₆₀, Ge₆₀, Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ and complexes with ORR derivatives are calculated to confirm that the nano-structures are stable structures [18, 19]. The capacities of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ to adsorb of ORR species are examined. The structures of Si_{60} , C_{60} and Ge_{60} nanocages are reported in Figure 1. The E_{formation} of Si₆₀, C₆₀ and Ge₆₀ are summarized in Figure 1. The possible mechanisms for ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages are examined to propose the acceptable mechanism and new catalysts with high performances. The ORR on surfaces of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages is processed by three pathways as presented in Table 1. The $\Delta G_{reaction}$ and $E_{activation}$ of ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ are investigated in Table

Results and discussion

Adsorption of ORR species on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge60 nanocages

The $E_{\text{formation}}$ of Si_{60} , C_{60} and Ge_{60} nanocages are -5.89, -4.42 and -5.58 eV. The E_{formation} of Si₆₀ are higher than C₆₀ and Ge₆₀ nanocages ca 1.52 and 0.31 eV. Results shown that E_{formation} of Si₆₀, C₆₀ and Ge₆₀ nanocages are negative.

The $E_{formation}$ of Si_{60} , C_{60} and Ge_{60} are calculated as following [19]:

$$E_{\text{formation}} = E_{\text{nanocage}} - 60 * E_{\text{X}}$$
 (1)

The E_{nanocage} is total energies of Si₆₀, C₆₀ and Ge₆₀ nanocages and the E_X are energies of Si, C, Ge atoms. The adoption energies (E_{adoption}) of Cr atoms on Si₆₀, C₆₀ and Ge₆₀ nanocages are calculated as following [20]:

$$E_{adoption} = E_{Cr-nanocage} - E_{nanocage} - E_{Cr}$$
 (2)

The E_{Cr-nanocage} is total energies of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ complexes and the E_{nanocage} is total energies of Si₆₀, C₆₀ and Ge₆₀ and E_{Cr} is energy of Cr. The E_{adsorption} of ORR derivatives on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages are calculated as following [21]:

$$E_{adsorption} = E_{specie-Cr-nanocage} - E_{Cr-nanocage} - E_{specie}$$
 (3)

The E_{specie-Cr-nanocage} is energies of complexes of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages with ORR derivatives, the E_{Cr-nanocage} is energies of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages and the E_{specie} is energies of ORR derivatives.

The Cr adoption on Si₆₀, C₆₀ and Ge₆₀ nanocages are examined and structures of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ are presented in Figure 1. The E_{adoption} of Cr on Si₆₀, C₆₀ and Ge₆₀ are shown in Figure 1. The E_{adoption} of Si₆₀, C₆₀ and Ge₆₀ nanocages are -4.56, -4.15 and -4.41 eV. The E_{adoption} of Cr-Si₆₀ are more negative than Cr-C₆₀ and Cr-Ge₆₀ nanocages ca 0.41 and 0.15 eV. The E_{adoption} of Cr on Si₆₀, C₆₀ and Ge₆₀ are negative and Cr have acceptable bonds with Si, C and Ge of Cr-Si₆₀, C₆₀ and Ge₆₀ nanocages. The Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ are stable structures and Cr is active site for ORR adsorption.

In this section, the adsorption of ORR species on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ are investigated. The structures of complexes of ORR species with Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ are shown in Figure 1. The O₂ is joined to Cr of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages. The E_{adsorption} of O₂ on Si₆₀, C₆₀ and Ge₆₀ nanocages are -0.45, -0.37 and -0.40 eV. The E_{adsorption} of O on Si₆₀, C₆₀ and Ge_{60} nanocages are -3.30, -2.87 and -2.96 eV. The E_{adsorption} of O + O on Si₆₀, C₆₀ and Ge₆₀ nanocages are -6.54, -5.78 and -5.87 eV.

The O+O and O have high interactions with Cr of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ and have acceptable $E_{adsorption}$. The O_2 on Cr- Si_{60} , Cr- C_{60} and Cr- Ge_{60} nanocages is produced the O and O + O on Cr of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages. The E_{adsorption} values of O +O and O with Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ are higher than O2. The OH and OOH are adsorbed on Cr atoms of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages and E_{adsorption} are higher than O₂. The Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ have higher capacities for ORR species adsorption than OH and OOH. The H₂O on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ are physically absorbed and H₂O is easily desorbed from Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages. The E_{adsorption} of ORR species on Cr-Si₆₀ and Cr-Ge₆₀ nanocages are higher than Cr-C₆₀ nanocage.

In this study, the E_{HLG} and q as charge transfer of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages and complexes of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ with ORR species are reported in Table 2. The complexes of ORR species (O. OH, OOH, O + O and H_2O) on Cr-Si₆₀ have lower E_{HLG} than corresponding values for Cr-C₆₀ and Cr-Ge₆₀ nanocages. The q as charge transfer between the ORR species (O, OH, OOH, O + O and H₂O) and Cr-Si₆₀ have higher corresponding values for Cr-C₆₀ and Cr-Ge₆₀ nanocages. The Cr-Si₆₀ and Cr-Ge₆₀ have higher capacities to join with ORR species than Cr-C₆₀. The Cr-Si₆₀ and Cr-Ge₆₀ nanocages have higher potential than Cr-C₆₀ for ORR.

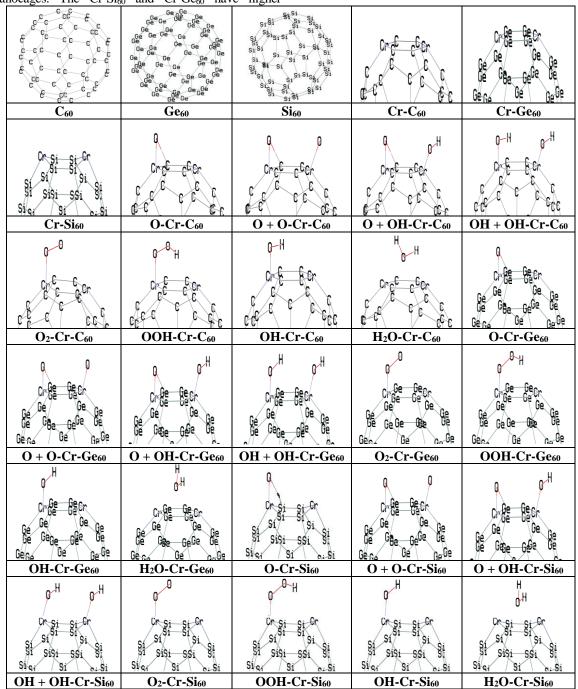


Fig. 1:Structures of Si₆₀, C₆₀ and Ge₆₀ nanocages, Cr doped nanocages (Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀) and complexes with ORR species.

Table-1: The Faction and AGreeties in eV for ORR on Cr-Sign Cr-Co and Cr-Gego nanocages

Table-1: The $E_{activation}$ and $\Delta G_{reaction}$ in eV for OR	R on Cr-S1 ₆₀	, Cr-C ₆₀ ar	nd Cr-Ge ₆	₀ nanocage	S.		
	11+G (2d, 2p) mo						
Nanocages	C	$Cr-C_{60}$ $Cr-Ge_{60}$		Cr-Si ₆₀			
ORR pathways 1, 2 and 3	$\mathbf{E}_{\mathbf{act}}$	ΔG_{reac}	$\mathbf{E}_{\mathbf{act}}$	ΔG_{reac}	$\mathbf{E}_{\mathbf{act}}$	ΔG_{reac}	
$surface\text{-}{}^*O_2 \to {}^*O\text{-}surface\text{-}O^*$	1.30	-1.52	1.34	-1.56	1.19	-1.74	
surface-*O2 → surface-*OOH	0.44	-1.39	0.45	-1.42	0.40	-1.58	
surface-*OOH → surface-O*	1.12	-2.68	1.14	-2.75	1.02	-3.06	
surface-O* → surface-*OH	1.05	-1.70	1.08	-1.74	0.96	-1.94	
$surface *OH \rightarrow surface + H_2O$	0.66	-0.60	0.67	-0.62	0.60	-0.69	
$surface-*OOH \rightarrow HO*-surface-*OH$	1.55	-3.38	1.59	-3.46	1.42	-3.85	
HO*-surface-*OH → surface-*OH + H ₂ O	0.96	-1.81	0.98	-1.86	0.87	-2.07	
$surface *OOH \rightarrow HO*-surface *O*$	1.01	-1.17	1.04	-1.20	0.93	-1.34	
HO*-surface-O* → surface-O* + H ₂ O	1.13	-1.45	1.15	-1.49	1.02	-1.66	
surface-O* → surface-*OH	1.05	-1.69	1.08	-1.73	0.96	-1.93	
	1+G (2d, 2p) mo						
Nanocages		r-C ₆₀		-Ge ₆₀	Cr-Si ₆₀		
ORR pathways 1, 2 and 3	$\mathbf{E}_{\mathbf{act}}$	ΔG_{reac}	$\mathbf{E}_{\mathrm{act}}$	ΔG_{reac}	$\mathbf{E}_{\mathbf{act}}$	ΔG_{reac}	
$surface \text{-}{}^*O_2 \rightarrow \text{*}O\text{-}surface \text{-}O^*$	1.33	-1.49	1.37	-1.52	1.22	-1.70	
$surface-*O_2 \rightarrow surface-*OOH$	0.45	-1.36	0.46	-1.39	0.41	-1.54	
surface-*OOH → surface-O*	1.15	-2.62	1.17	-2.69	1.04	-2.99	
$surface-O^* \rightarrow surface-*OH$	1.07	-1.66	1.10	-1.70	0.98	-1.90	
surface $*OH \rightarrow surface + H_2O$	0.68	-0.59	0.69	-0.61	0.61	-0.67	
$surface-*OOH \rightarrow HO*-surface-*OH$	1.59	-3.30	1.63	-3.38	1.45	-3.76	
HO*-surface-*OH → surface-*OH + H ₂ O	0.98	-1.77	1.00	-1.82	0.89	-2.02	
surface-*OOH \rightarrow HO*-surface-O*	1.03	-1.14	1.06	-1.17	0.95	-1.31	
HO*-surface-O* → surface-O* + H ₂ O	1.16	-1.42	1.18	-1.46	1.04	-1.62	
surface-O* → surface-*OH	1.07	-1.65	1.10	-1.69	0.98	-1.89	
C	OSMO model in	water					
Nanocages	C	Cr-C ₆₀		Cr-Ge ₆₀		Cr-Si ₆₀	
ORR pathways 1, 2 and 3	$\mathbf{E}_{\mathbf{act}}$	ΔG_{reac}	$\mathbf{E}_{\mathbf{act}}$	ΔG_{reac}	$\mathbf{E}_{\mathbf{act}}$	ΔG_{reac}	
$surface \text{-} *O_2 \rightarrow *O\text{-}surface \text{-}O*$	1.27	-1.55	1.31	-1.60	1.16	-1.78	
$surface-*O_2 \rightarrow surface-*OOH$	0.43	-1.42	0.44	-1.45	0.39	-1.62	
surface-*OOH → surface-O*	1.09	-2.74	1.11	-2.81	1.00	-3.13	
$surface-O^* \rightarrow surface-*OH$	1.03	-1.74	1.06	-1.78	0.94	-1.98	
surface-*OH \rightarrow surface + H ₂ O	0.65	-0.61	0.65	-0.63	0.59	-0.71	
$surface-*OOH \rightarrow HO*-surface-*OH$	1.52	-3.46	1.55	-3.54	1.39	-3.94	
HO*-surface-*OH → surface-*OH + H ₂ O	0.94	-1.85	0.96	-1.90	0.85	-2.12	
surface-*OOH \rightarrow HO*-surface-O*	0.99	-1.20	1.02	-1.23	0.91	-1.37	
$HO*$ -surface- $O* \rightarrow surface$ - $O* + H2O$	1.10	-1.48	1.12	-1.52	1.00	-1.70	
$surface-O^* \rightarrow surface-*OH$	1.03	-1.73	1.06	-1.77	0.94	-1.97	

Reaction steps of ORR pathways on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages

The Eactivation and $\Delta G_{reaction}$ of reactions of pathways ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ is examined [22]. The ΔG of reaction of ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ is calculated:

$$\Delta G = \Delta H - T\Delta S + \Delta G_{U} + \Delta G_{pH}$$
 (4)

The $\Delta G_U = -$ neU, n is electron numbers and U is electrode potential.

The E_{activation} of reactions of ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ is calculated:

$$E_{activation} = E_{TS} - E_{IS}$$
 (5)

The E_{TS} and E_{IS} are total energy of transition state and initial sate of reaction steps of ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀. The HMO-LUMO gap energy (E_{HLG}) and charge transfer (q) for Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages and complexes of ORR species with Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages are calculated.

$$E_{HLG} = E_{HOMO} - E_{LUMO}$$
 (6)

The E_{HOMO} and E_{LUMO} are energy of HOMO and LUMO of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages and complexes of ORR species with Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages.

The adsorption of OOH on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages has higher E_{adsorption} than O₂ adsorption. The dissociation of O2 on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages has high E_{activation} values. The dissociation of O2 molecules on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ to O + O have high E_{activation}. The hydrogen atom can react by OOH on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages and the OOH adsorption on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages is more favorable process than O₂ dissociation.

In mechanism 1, the *OOH on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ is hydrogenated and H₂O is released and *O on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ is produced. The *O on Cr-Si $_{60}$, Cr-C $_{60}$ and Cr-Ge $_{60}$ is hydrogenated and *OH on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ is formed. The *OH on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ is

hydrogenated and H₂O is separated. The ΔG_{reaction} of creation of the second H₂O on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages are -0.69, -0.60 and -0.62 eV. In pathway 2, the *OOH on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ is hydrogenated and HO*-*OH and -*OH are formed and H₂O is released. In final step, the *OH on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages is hydrogenated and H₂O is released. The E_{activation} of creation of the second H₂O on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages are 1.02, 1.13 and 1.15 eV. In mechanism 3, *OOH on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ is dissociated to *OH and *O. The *OH is hydrogenated and H2O is formed on Cr- Si_{60} , Cr- C_{60} and Cr- Ge_{60} . The *O on Cr- Si_{60} , Cr- C_{60} and Cr-Ge₆₀ is hydrogenated and*OH is formed. The *OH on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ is hydrogenated and Eactivation of creation of *OH on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages are 0.96, 1.05 and 1.08 eV.

In mechanisms 1, 2 and 3 the formation of -*OH, creation of -*OH and H₂O and production of -*O and H₂O are rate-determining steps for ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀. The $\Delta E_{activation}$ of -*OH formation on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ 1 is lower than -*OH, -*O and H₂O in pathways 2 and 3. The $\Delta G_{reaction}$ of -*OH formation on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ 1 is higher than -*OH, -*O and H₂O in pathways 2 and 3. The pathway 1 is effective mechanisms for ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀. The overpotential of ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ are lower than metal-based catalysts. The Cr-Si₆₀ and Cr-Ge₆₀ nanocages have lower over-poential for ORR than Cr-C₆₀ nanocage. The Cr-Si₆₀ and Cr-Ge₆₀ nanocages are catalyzed the ORR with high efficiency.

Table-2: The over-potential in V, E_{HLG} in eV and q in e of complexes of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ with ORR species.

			l, 2p) model in gas				
	$\mathrm{Cr} ext{-}\mathrm{C}_{60}$		Cr-Ge ₆₀		Cr-Si ₆₀		
Complexes	$\mathbf{E}_{\mathbf{HLG}}\left(\mathbf{eV}\right)$	q (e)	$\mathbf{E}_{\mathbf{HLG}}\left(\mathbf{eV}\right)$	q (e)	$\mathbf{E}_{\mathbf{HLG}}\left(\mathbf{eV}\right)$	q (e)	
O-nano	-4.30	-0.23	-3.84	-0.26	-3.34	-0.30	
O-nano-O	-2.13	-0.47	-1.90	-0.53	-1.66	-0.60	
O-nano-OH	-2.42	-0.41	-2.16	-0.46	-1.88	-0.53	
HO-nano-OH	-2.49	-0.40	-2.22	-0.45	-1.93	-0.52	
O ₂ -nano	-3.37	-0.03	-3.01	-0.03	-2.62	-0.04	
HOO-nano	-4.42	-0.11	-3.94	-0.13	-3.43	-0.15	
HO-nano	-4.65	-0.22	-4.15	-0.24	-3.61	-0.28	
H ₂ O-nano	-3.29	-0.02	-2.94	-0.02	-2.55	-0.02	
Nanocages	Cr-Si ₆	0	$Cr-C_{60}$		Cr-Ge ₆₀		
Over-potential	0.25		0.29		0.33		
	B3LY	TP/6-311+G (2d	l, 2p) model in gas p	ohase			
	Cr-C ₆	0	Cr-Ge	60	Cr-Si ₆₀		
Complexes	E _{HLG} (eV)	q (e)	$E_{HLG}(eV)$ q(e)		E _{HLG} (eV)	q (e)	
O-nano	-4.11	-0.22	-3.67	-0.25	-3.19	-0.29	
O-nano-O	-2.04	-0.45	-1.82	-0.50	-1.58	-0.58	
O-nano-OH	-2.31	-0.39	-2.07	-0.44	-1.80	-0.51	
HO-nano-OH	-2.38	-0.38	-2.12	-0.43	-1.85	-0.50	
O ₂ -nano	-3.23	-0.03	-2.88	-0.03	-2.50	-0.04	
HOO-nano	-4.22	-0.11	-3.77	-0.12	-3.28	-0.14	
HO-nano	-4.45	-0.21	-3.97	-0.23	-3.45	-0.26	
H ₂ O-nano	-3.15	-0.01	-2.81	-0.02	-2.44	-0.02	
Nanocages	Cr-Si ₆	0	Cr-C ₆	50	Cr-Ge ₆₀		
Over-potential	0.23			0.27		0.31	
•		COSMO r	nodel in water				
	Cr-C ₆		Cr-Ge	60	Cr-Si ₆₀		
Complexes	E _{HLG} (eV)	q (e)	E _{HLG} (eV)	q (e)	E _{HLG} (eV)	q (e)	
O-nano	-4.50	-0.24	-4.01	-0.27	-3.49	-0.31	
O-nano-O	-2.23	-0.49	-1.99	-0.55	-1.73	-0.63	
O-nano-OH	-2.53	-0.43	-2.26	-0.48	-1.96	-0.56	
HO-nano-OH	-2.60	-0.42	-2.32	-0.47	-2.02	-0.54	
O ₂ -nano	-3.53	-0.03	-3.15	-0.03	-2.74	-0.04	
HOO-nano	-4.62	-0.12	-4.12	-0.13	-3.58	-0.15	
HO-nano	-4.86	-0.22	-4.34	-0.25	-3.77	-0.29	
H ₂ O-nano	-3.44	-0.02	-3.07	-0.02	-2.67	-0.02	
Nanocages	Cr-Si ₆			Cr-C ₆₀		Cr-Ge ₆₀	
Over-potential	0.26			0.28		0.32	

Conclusion

In this work, the ORR mechanisms on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages are investigated. The Cr atoms of Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ are active positions to adsorb the ORR species. The adsorption OOH on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages has higher E_{adsorption} than O₂ adsorption and dissociation of O₂ molecules on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages has high Eactivation values. The ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ nanocages is processed by three pathways. The $\Delta E_{activation}$ of -*OH formation on $\text{Cr-Si}_{60}, \text{Cr-C}_{60}$ and Cr-Ge_{60} 1 is lower than -*OH, -*O and H₂O in pathways 2 and 3. The Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ have higher catalytic activity for ORR processes than metal-based catalysts and AlN, C, BN, AlP and BP nanocages and AlN, C, BN, Si, Ge, AlP and BP nanotubes. The $\Delta G_{reaction}\, of$ -*OH formation on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ 1 is higher than -*OH, -*O and H₂O in pathways 2 and 3. The pathway 1 is acceptable mechanism for ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀. The over-potential of ORR on Cr-Si₆₀, Cr-C₆₀ and Cr-Ge₆₀ are lower than metal-based catalysts. The Cr-Si₆₀ and Cr-Ge₆₀ nanocages are proposed to catalyze the ORR with high efficiency.

Acknowledgement:

Jilin Provincial Department of Education Scientific Research Project, No: JJKH20230423KJ.

References

- 1. Z. L. Zhao, O. Wang, L. Zhang, H. M. An, L. Zhou, M. L. Chang, Galvanic exchange-formed ultra-low Pt loading on synthesized unique porous Ag-Pd nanotubes for increased active sites toward oxygen reduction reaction, Electrochim. Acta, **263**, 209 (2018).
- 2. J. Yao, C. Li, K. Sun, Y. Cai, H. Li, W. Ouyang, H. Li, Ndc-scene: Boost monocular 3d semantic scene completion in normalized coordinates space. IEEE/CVF Int. Computer Vision 11, 9455 (2023).
- P. Li, J. Abbas, D. Balsalobre-Lorente, O. Wang, Q. Zhang, S. A. R. Shah, Impact of sectoral mix on environmental sustainability: How heterogeneity addressed? Gondwana Res. 128, 86 (2024).
- 4. J. X. Chen, L. Peng, J. Ma, H. P. Ying, Liberation of a pinned spiral wave by a rotating electric pulse. Euro. phys. Lett., 107, 38001 (2014).
- 5. X. Sun, S. Zhu, J. Guo, S. Peng, X. Qie, Z. Yu, P. Li, Exploring ways to improve China's ecological well-being amidst air pollution challenges using

- mixed methods. J. Environ. Management, 364, 121457 (2024).
- M. M. Khotbehsara, M. Zadshir, B. M. Miyandehi, E. Mohseni, S. Rahmannia, S. Fathi, Rheological, mechanical and durability properties of self-compacting mortar containing nano-TiO2 and fly ash. J. American Sci., 10, 222 (2014).
- 7. B. Mehdizadeh, K. Vessalas, B. Ben, A. Castel, S. Deilami, H. Asadi, Advances in Characterization of Carbonation Behavior in Slag-Based Concrete Using Nanotomography. Int. Variability, 1, 297 (2022).
- 8. B. Mehdizadeh Miyandehi, K. Vessalas, A. Mortazavi, Castel, M. Investigation Carbonation Behaviour in High-Volume GGBFS Concrete for Rigid Road Pavements. ASCP 1, 12
- 9. A. Naseri, B. Maleki, T. Asheghi Mehmandari, A. Tohidi, A. Fahimifar, Investigating the influence of Sample geometric variations on mechanical characterization in rock and concrete. J. Mining Environ., 16, 1089 (2025).
- 10. P. Jafari, E. Rasekh, T. Asheghi Mehmandari, M. Mohammadifar, A. Fahimifar, D. Armaghani, Upper-bound solutions for active face failure in shallow rectangular tunnels in anisotropic and non-homogeneous undrained clays. Geotech. Geolog. Eng., 43, 1 (2025).
- 11. T. A. Mehmandari, M. Shokouhian, M. Imani, A. Fahimifar, Experimental and numerical analysis of tunnel primary support using recycled, and hvbrid fiber reinforced shotcrete. In Structures, 63, 106282 (2024).
- 12. Mehmandari, T. A., Shokouhian, M., Imani, M., Tee, K. F., Fahimifar, A. Split Tensile Behavior of Recycled Steel Fiber-Reinforced Concrete. ACI Mat. J., 122, 5147 (2025).
- 13. T. A. Mehmandari, M. Shokouhian, M. Z. Josheghan, S. A. Mirjafari, A. Fahimifar, D. J. Armaghani, K. F. Tee, Flexural properties of fiber-reinforced concrete using hybrid recycled steel fibers and manufactured steel fibers. J. Building Eng., 98, 111069 (2024).
- 14. T. A. Mehmandari, D. Mohammadi, M. Ahmadi, M. Mohammadifar, Fracture mechanism and ductility performances of fiber reinforced shotcrete under flexural loading insights from digital image correlation (DIC). Insight Civil Eng., 7, 611 (2024).
- 15. M. Ershadi, M. Javanbakht, D. Brandell, S. A. Mozaffari, A. M. Aghdam, Facile synthesis of amino-functionalized mesoporous Fe3O4/rGO 3D nanocomposite by diamine compounds as Liion battery anodes. Appl. Sur. Sci., 601, 154120 (2022).

- 16. A. Molaei Aghdam, S. Habibzadeh, M. Javanbakht, M. Ershadi, M. R. Ganjali, High interspace-layer manganese selenide nanorods as a high-performance cathode for aqueous zinc-ion batteries. ACS Appl. Energy Mat., 6, 3225 (2023).
- 17. A. Molaei Aghdam, N. Mikaeili Chahartagh, E. Delfani, High-Efficient Capacitive Deionization Using Amine-Functionalized ZIF-67@2D MXene: Toward Ultrahigh Desalination Performance. Adv. Mat. Techn., 8, 2300628 (2023).
- 18. A. M. Aghdam, N. M. Chahartagh, S. Namvar, M. Ershadi, F. B. Ajdari, E. Delfani, Improving the performance of a SnS 2 cathode with interspace layer engineering using a Na+ insertion/extraction method for aqueous zinc ion batteries. J. Mat. Chem. A, 12, 1047 (2024).
- 19. F. B. Ajdari, F. Abbasi, A. M. Aghdam, F. G. C. Khaneh, A. G. Arjenaki, V. Farzaneh, S. Ramakrishna, Innovative self-repairing binders tackling degradation and de-lithiation challenges: Structure, mechanism, high energy and durability. Mat. Sci. Eng. Reports, 160, 100830 (2024).
- 20. Y. Ru, M. Gruninger, Y. Dou, Robust selfsupervised symmetric nonnegative matrix factorization to the graph clustering. Sci. Reports, 15, 7350 (2025).
- 21. Y. Huo, S. Gang, C. Guan, Fcihmrt: Feature cross-layer interaction hybrid method based on Res2Net and transformer for remote sensing scene classification, Electronics, 12, 4362 (2023).
- 22. J. Singh, R. Abraham, Magnetic Catalyst CdFe2O4: Direct Conversion of Thiols into Antibacterial Sulfonamides. Biol. Mol. Chem., 2, 13 (2024).